ELSEVIER

Contents lists available at ScienceDirect

Sensors and Actuators B: Chemical

journal homepage: www.elsevier.com/locate/snb

Review

Gas sensors based on anodic tungsten oxide

Jarmo Kukkola^{a,*}, Jani Mäklin^a, Niina Halonen^a, Teemu Kyllönen^a, Géza Tóth^a, Maria Szabó^b, Andrey Shchukarev^c, Jyri-Pekka Mikkola^{c,d}, Heli Jantunen^a, Krisztián Kordás^a

- ^a Microelectronics and Materials Physics Laboratories, Department of Electrical and Information Engineering, University of Oulu, PO Box 4500, FI-90014, Oulu, Finland
- ^b Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, H-6720 Szeged, Hungary
- ^c Technical Chemistry, Department of Chemistry, Chemical-Biological Center, Umeå University, SE-90187 Umeå, Sweden
- d Industrial Chemistry and Reaction Engineering, Process Chemistry Center, Åbo Akademi University, Biskopsgatan 8, FI-20500, Åbo-Turku, Finland

ARTICLE INFO

Article history: Received 20 May 2010 Received in revised form 4 October 2010 Accepted 26 October 2010 Available online 3 November 2010

Keywords: Metal oxide Tungsten oxide Gas sensing Sensor Anodic oxidation Drop casting

ABSTRACT

Nanostructured porous tungsten oxide materials were synthesized by the means of electrochemical etching (anodization) of tungsten foils in aqueous NaF electrolyte. Formation of the sub-micrometer size mesoporous particles has been achieved by infiltrating the pores with water. The obtained colloidal anodic tungsten oxide dispersions have been used to fabricate resistive WO₃ gas sensors by drop casting the sub-micrometer size mesoporous particles between Pt electrodes on Si/SiO₂ substrate followed by calcination at $400\,^{\circ}\text{C}$ in air for 2 h. The synthesized WO₃ films show slightly nonlinear current–voltage characteristics with strong thermally activated carrier transport behavior measured at temperatures between $-20\,^{\circ}\text{C}$ and $280\,^{\circ}\text{C}$. Gas response measurements carried out in CO, H₂, NO and O₂ analytes (concentration from 1 to 640 ppm) in air as well as in Ar buffers (O₂ only in Ar) exhibited a rapid change of sensor conductance for each gas and showed pronounced response towards H₂ and NO in Ar and air, respectively. The response of the sensors was dependent on temperature and yielded highest values between $170\,^{\circ}\text{C}$ and $220\,^{\circ}\text{C}$.

© 2010 Elsevier B.V. All rights reserved.

Contents

1.	Introduction			294
2.	Experimental			294
2.1. Anodic tungsten oxide synthesis and sensor preparation		tungsten oxide synthesis and sensor preparation	294	
	2.2.	Structu	ral characterization	295
	2.3.	Electric	al measurements and gas response analyses	295
3. Results and discussion			scussion	295
3.1. Structure, composition and electrical behavior of pristine and calcined anodic tungsten oxide		295		
3.2. DC electrical properties of calcined anodic tungsten oxide		trical properties of calcined anodic tungsten oxide	296	
	3.3. Gas sensing with WO ₃		sing with WO ₃	296
		3.3.1.	CO sensing	297
		3.3.2.	H ₂ sensing	
		3.3.3.	NO sensing	
		3.3.4.	O ₂ Sensing	298
4. Conclusio		usions		298
Acknowledgements			nents	299
	References Biographies Biographies			
				300

^{*} Corresponding author. Tel.: +358 8 553 2718; fax: +358 8 553 2728. E-mail address: jarmo.kukkola@ee.oulu.fi (J. Kukkola).