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A major area of application for nanowires and nanotubes is
likely to be the sensing of important molecules, either for
medical or environmental health purposes. The ultrahigh
surface-to-volume ratios of these structures make their
electrical properties extremely sensitive to surface-adsorbed
species, as recent work has shown with carbon nanotubes,[1, 2]

functionalized silicon nanowires and metal nanowires.[3, 4]

Chemical nanosensors are interesting because of their poten-
tial for detecting very low concentrations of biomolecules or
pollutants on platforms small enough to be used in vivo or on
a microchip. Here we report the development of photo-
chemical NO2 sensors that work at room temperature and are
based on individual single-crystalline SnO2 nanoribbons.

Tin dioxide is a wide-bandgap (3.6 eV) semiconductor. For
n-type SnO2 single crystals, the intrinsic carrier concentration
is primarily determined by deviations from stoichiometry in
the form of equilibrium oxygen vacancies, which are predom-
inantly atomic defects.[5] The electrical conductivity of nano-
crystalline SnO2 depends strongly on surface states produced
by molecular adsorption that results in space-charge layer
changes and band modulation.[6] NO2, a combustion product
that plays a key role in tropospheric ozone and smog
formation, acts as an electron-trapping adsorbate on SnO2

crystal faces and can be sensed by monitoring the electrical
conductance of the material. Because NO2 chemisorbs
strongly on many metal oxides,[7] commercial sensors based
on particulate or thin-film SnO2 operate at 300 ± 500 �C to
enhance the surface molecular desorption kinetics and con-
tinuously ™clean∫ the sensors.[8] The high-temperature oper-
ation of these oxide sensors is not favorable in many cases,
particularly in an explosive environment. We have found that
the strong photoconducting response of individual single-
crystalline SnO2 nanoribbons makes it possible to achieve
equally favorable adsorption ± desorption behavior at room
temperature by illuminating the devices with ultraviolet (UV)
light of energy near the SnO2 bandgap. The active desorption
process is thus photoinduced molecular desorption (Fig-
ure 1).[9]

In conclusion, we have succeeded in the development of the
ruthenium-based metathesis catalyst 4, which exhibits excel-
lent metathesis activity, without any loss of stability in air.
These findings once again demonstrate that seemingly small
variations in ligand structure can result in significant improve-
ments in catalysis.

Experimental Section

4 : CuCl (21 mg, 0.22 mmol) and then 1 (168 mg, 0.20 mmol) in CH2Cl2
(4 mL total) were added to a solution of 8 (94 mg, 0.39 mmol) in CH2Cl2
(16 mL) in a glove box. This reaction mixture was stirred for 1 h at 40 �C.
The reaction mixture was concentrated in vacuo. The residue was dissolved
in a minimum volume of CH2Cl2, passed through a Pasteur pipette
containing a plug of cotton, and concentrated in vacuo. The residue was
purified by flash chromatography on silica gel (4:1 hexane/MTBE) to
afford 4 (99 mg, 71%). 1H NMR (CD2Cl2): �� 0.81 (d, J� 6.2 Hz, 6H),
2.15 ± 2.72 (br, 18H), 4.16 (s, 4H), 4.36 (septet, J� 6.2 Hz, 1H), 6.92 (dd,
J� 0.9, 7.3 Hz, 1H), 6.99 (t, J� 7.5 Hz, 1H), 7.06 (br, 4H), 7.31 ± 7.42 (m,
6H), 16.60 ppm (s, 1H); 13C NMR (CD2Cl2): �� 19.6, 20.5, 51.2, 77.0, 120.9,
123.1, 127.3, 128.1, 128.6, 128.8, 128.9, 131.1, 132.8, 137.8, 138.5, 138.9, 139.3,
147.7, 148.5, 209.8, 297.4 ppm; IR (film): �� � 3492 (br), 1702 (w), 1605 (w),
1481 (m), 1449 (m), 1422 (m), 1263 (s), 1105 (m) cm�1; HRMSm/z calcd for
C37H42ON2Cl2102Ru: [M�] 702.1711, found: 702.1719; elemental analysis
calcd (%) for C37H42ON2Cl2Ru ¥ 1/2H2O: C 62.44, H 6.09, N 3.94; found: C
62.32; H 5.97, N 3.88.
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